• SETI.Germany News RSS-Feed

    von Veröffentlicht: 09.06.2018 01:00
    1. Kategorien:
    2. Projekte

    Die Pentathlon-Pause ist vorüber, vor der Sommerpause steht anlässlich der Fußballweltmeisterschaft noch die vierte Challenge der diesjährigen PrimeGrid Challenge Series an.

    World Cup Challenge
    Beginn: 14.06.2018, 0:00 UTC = 1:00 MEZ = 2:00 MESZ
    Ende: 19.06.2018, 0:00 UTC = 1:00 MEZ = 2:00 MESZ
    Subprojekt: Sierpinski / Riesel Base 5 LLR (SR5)


    Der offizielle Thread zur Challenge im PrimeGrid-Forum ist hier zu finden.

    Es zählen für diese Challenge nur WUs des Subprojekts Sierpinski / Riesel Base 5 LLR (SR5), die nach dem 14.06. um 02:00 Uhr heruntergeladen und vor dem 19.06. um 02:00 Uhr zurückgemeldet werden! Das gewünschte Subprojekt kann in den PrimeGrid-Einstellungen festgelegt werden.

    Anwendungen gibt es für Windows, Linux und MacOS (Intel), jeweils 32- und 64-Bit. Wer in letzter Zeit keine WUs von einem PrimeGrid-LLR-Subprojekt berechnet hat, sollte dies vielleicht schon vor der Challenge mit kleineren WUs wie SGS nachholen, um die relativ große Anwendung (~35 MB) bereits auf dem Rechner zu haben.

    Die verwendete LLR-Anwendung belastet die CPU sehr stark und toleriert keinerlei Fehler. Daher bitte nicht zu stark übertakten und auf gute Kühlung achten!

    Die WU-Laufzeiten betragen bei Benutzung einzelner CPU-Kerne einen guten halben Tag auf halbwegs aktuellen CPUs. Schneller und in vielen Fällen auch effizienter geht es, wenn mehrere CPU-Kerne an einer WU arbeiten. Das lässt sich mit einer app_config.xml erreichen (im Beispiel für 4 Kerne):
    Code:
    <app_config>
      <app_version>
        <app_name>llrSR5</app_name>
        <cmdline>-t 4</cmdline>
        <avg_ncpus>4</avg_ncpus>
      </app_version>
    </app_config>
    Dieser Text muss als app_config.xml im Unterverzeichnis projects\www.primegrid.com des BOINC-Datenverzeichnisses (unter Windows standardmäßig C:\ProgramData\BOINC) gespeichert werden. Die Einstellung wird durch Konfigurationsdatei einlesen oder Neustart für neue WUs übernommen.

    In jedem Fall haben moderne Intel-CPUs durch die automatisch benutzten Optimierungen (AVX, FMA3) einen erheblichen Vorteil. CPUs, die Hyperthreading unterstützen, laufen oft effizienter, wenn Hyperthreading nicht benutzt wird.

    Die Punkte für die Challenge-Statistik sind identisch mit den BOINC-Credits, werden jedoch sofort gutgeschrieben, während die BOINC-Credits erst vergeben werden, wenn das Quorum von 2 übereinstimmenden Ergebnissen erreicht ist.

    Team-Stats bei PrimeGrid
    User-Stats bei PrimeGrid

    Team-Stats bei SETI.Germany
    Detail-Statistik für SETI.Germany
    User-Stats bei SETI.Germany

    Zum Diskussionsthread
    von Veröffentlicht: 08.06.2018 16:10
    1. Kategorien:
    2. Projekte

    Nachdem seit einem Monat schon keine WUs mehr erzeugt worden waren, wurden auf dem Weg zum Projektende nun auch die übrigen BOINC-Dienste abgeschaltet.

    05. Juni 2018
    Heute wurden Scheduler, File Uploader und alle anderen Dienste angehalten. Die Projekt-Webseite wird noch für einige Zeit erreichbar bleiben.

    Originaltext:
    Zitat Zitat von http://boinc.gorlaeus.net/
    05 june 2018
    As of today the scheduler, file uploader and all other daemons have been stopped. The project web site will stay online for some time still
    von Veröffentlicht: 08.06.2018 15:45
    1. Kategorien:
    2. Projekte

    Der Fund der Primzahl 104*579^222402-1 beweist, dass k=204 die kleinste verallgemeinerte Riesel-Zahl zur Basis b=579 ist.

    Basis R579 bewiesen
    Am 24. Mai hat JD2K, Mitglied von Gridcoin, die letzte Primzahl für die Basis R579 gefunden.
    Die Primzahl 104*579^222402-1 hat 614.428 Dezimalstellen und erreicht die Top 5000 in Chris Caldwells Datenbank der größten bekannten Primzahlen.

    Gute Arbeit!
    02.06.2018, 16:04:08 MEZ

    Originaltext:
    Zitat Zitat von http://srbase.my-firewall.org/sr5/
    base R579 proven
    On 24th of May, JD2K, a member of the team Gridcoin found the last prime for base R579.
    The prime 104*579^222402-1 has 614428 digits and entered the TOP5000 in Chris Caldwell's The Largest Known Primes Database.

    Good job!
    2 Jun 2018, 15:04:08 UTC
    von Veröffentlicht: 08.06.2018 14:55
    1. Kategorien:
    2. Projekte
    Vorschau

    Die Sammlung der liebevoll kommentierten graphischen Darstellungen der Orthogonalitätsbeziehungen von orthogonalen diagonalen ...
    von Veröffentlicht: 07.06.2018 20:15
    1. Kategorien:
    2. Projekte

    Mit dem sprichwörtlichen Glück der Iren hat der Gewinner des roten Trikots für den größten Fund bei der diesjährigen Tour de Primes knapp vier Monate später beim gleichen Subprojekt noch einmal zugeschlagen:

    GFN-262144-Megaprimzahl!
    Am 5. Juni 2018 um 06:24:10 MEZ hat PrimeGrids Generalized Fermat Prime Search eine verallgemeinerte Fermat-Megaprimzahl gefunden:

    5152128^262144+1

    Die Primzahl hat 1759508 Dezimalstellen und erreicht Chris Caldwells Datenbank der größten bekannten Primzahlen auf Platz 8 für verallgemeinerte Fermat-Primzahlen und Platz 60 insgesamt.

    Die Entdeckung gelang Rob Gahan (Robish) aus Irland mit einer NVIDIA GeForce GTX Titan X in Verbund mit einem Intel Core i7-5930K @ 3,50 GHz mit 32 GB RAM unter Windows 10. Diese GPU brauchte etwa 25 Minuten für den PRP-Test mit GeneferOCL3. Rob ist Mitglied des Teams Storm.

    Die PRP wurde am 5. Juni 2018 um 06:43:47 MEZ von Aaron Houston Clinton (denim) aus den Vereinigten Staaten mit einer NVIDIA GeForce GTX 1080 Ti in Verbund mit einem Intel Core i7-6700K @ 4,00 GHz mit 16 GB RAM unter Windows 10 bestätigt. Diese GPU brauchte etwa 13 Minuten für den PRP-Test mit GeneferOCL3. Aaron ist Mitglied des Teams SETI.USA.

    Die Primalität dieser PRP wurde mit einem Intel Core i7-7700K @ 4,20 GHz mit 16 GB RAM unter Windows 10 bewiesen. Dieser Rechner brauchte etwa 7 Stunden 11 Minuten für den Primalitätstest mit LLR.

    Für weitere Einzelheiten siehe bitte die offizielle Bekanntgabe.
    06.06.2018 | 22:39:58 MEZ

    Originaltext:
    Zitat Zitat von https://www.primegrid.com/
    GFN-262144 Mega Prime!
    On 5 June 2018, 05:24:10 UTC, PrimeGrid’s Generalized Fermat Prime Search found the Generalized Fermat mega prime:

    5152128^262144+1

    The prime is 1,759,508 digits long and enters Chris Caldwell's The Largest Known Primes Database ranked 8th for Generalized Fermat primes and 60th overall.

    The discovery was made by Rob Gahan (Robish) of Ireland using an NVIDIA GeForce GTX Titan X in an Intel(R) Core(TM) i7-5930K CPU at 3.50GHz with 32GB RAM, running Windows 10 Core Edition. This GPU took about 25 minutes to probable prime (PRP) test with GeneferOCL3. Rob is a member of the Storm team.

    The prime was verified on 5 June 2018, 05:43:47 by Aaron Houston Clinton (denim) of the United States using an NVIDIA GeForce GTX 1080 Ti GPU in an Intel(R) Core(TM) i7-6700K CPU at 4.00GHz with 16GB RAM, running Windows 10 Professional Edition. This GPU took about 13 minutes to probable prime (PRP) test with GeneferOCL3. Aaron is a member of the SETI.USA team.

    The PRP was confirmed prime by an Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz with 16GB RAM, running Microsoft Windows 10 Professional. This computer took about 7 hours 11 minutes to complete the primality test using LLR.

    For more details, please see the official announcement.
    6 Jun 2018 | 21:39:58 UTC
    von Veröffentlicht: 06.06.2018 07:43
    1. Kategorien:
    2. Projekte

    Link zum Originalartikel mit Video: https://www.worldcommunitygrid.org/a...?articleId=563 (englisch)

    Smash Childhood Cancer Forscher wählen neue Zielmoleküle
    Von: Dr. Akira Nakagawara, Dr.
    CEO des Saga Medical Center KOSEIKAN und Präsident Emeritus, Chiba Cancer Center
    5. Juni 2018

    Zusammenfassung
    Das Forschungsteam von Smash Childhood Cancer hat kürzlich mehrere neue Zielmoleküle als Schwerpunkt ihrer aktuellen Arbeit ausgewählt.
    Erfahren Sie mehr über die Bedeutung dieser Moleküle in diesem Update.

    Seit dem Start des Smash Childhood Cancer-Projekts sind fast anderthalb Jahre vergangen. Im Namen aller Teammitglieder schätze ich die Beiträge von Freiwilligen zu diesem Projekt sehr.

    Durch die Aufnahme neuer Mitglieder aus dem Projekt Help Fight Childhood Cancer ist unser Forschungsteam für Smash Childhood Cancer ziemlich international geworden. Kinderärzte aus Japan, Hongkong und den Vereinigten Staaten beteiligen sich an diesem großen, neuen Projekt der Medikamentenentwicklung.

    Ziel des Projekts "Help Fight Childhood Cancer" war es, nach neuen und besseren Behandlungsmethoden für Neuroblastome zu suchen. Smash Childhood Cancer befasst sich jedoch nicht nur mit Neuroblastomen, sondern auch mit anderen Krebserkrankungen wie Hirntumoren, Osteosarkomen (Knochenkrebs), Keimzelltumoren, Hepatoblastomen (Leberkrebs) und andere.

    Mehrere Proteine ​​- beta-Catenin, LIN28B, N-CYM und andere - wurden als Zielmoleküle neu ausgewählt. Die Strukturen der Beta-Catenin- und LIN28B-Proteine ​​wurden bestimmt, so dass mit dem computergestützten Screening begonnen wurde, indem nach Verbindungen mit hoher Bindungsaffinität aus einer Bibliothek von mehr als 3 Millionen kleinen Molekülen gesucht wurde.

    Das N-CYM-Protein, das von meinem Team und mir entdeckt wurde, ist das neuartige treibende Genprodukt des Neuroblastoms. Das Protein kommt nur in Menschen und Schimpansen vor und wird durch De-novo-Evolution erzeugt (was bedeutet, dass es ein Teil der Evolution des Krebses ist). Das Protein ist aus irgendeinem Grund ziemlich schwierig zu kristallisieren und wir arbeiten immer noch daran, seine genaue Struktur zu bestimmen, so dass die Entdeckung von Medikamenten dagegen beginnen könnte.

    Kürzlich erhielten wir von der japanischen Regierung ein Stipendium zur Unterstützung unserer Arzneimittelentdeckung gegen das LIN28B-Protein, was unseren Fortschritt bei Smash Childhood Cancer beschleunigen könnte.

    Noch einmal möchte ich unseren Dank an die Freiwilligen auf der ganzen Welt aussprechen, die das Projekt unterstützt haben. Für Kinder, die gegen Krebs im Kindesalter kämpfen, möchten wir so schnell wie möglich ein neues Medikament entdecken und eine Behandlung ohne Nebenwirkungen entwickeln.
    von Veröffentlicht: 24.05.2018 17:30
    1. Kategorien:
    2. SETI.Germany

    Liebe Mitcruncher,

    das ursprüngliche Teamwork-Projekt für dieses Quartal, theSkyNet POGS, wurde beendet. Dafür rückt nun das Projekt nach, das in der Abstimmung im internen Subforum für alle SETI.Germany-Mitglieder die zweitmeisten Stimmen erhielt. Es ist ein nicht minder alter bekannter: yoyo@home.

    Projekt-URL: http://www.rechenkraft.net/yoyo/
    SETI.Germany beitreten: http://www.rechenkraft.net/yoyo/team_join_form.php?id=3
    Artikel im SG-Wiki: https://www.seti-germany.de/wiki/yoyo@home

    Anwendungen gibt es für Windows, Linux und macOS (32 Bit und 64 Bit, Linux auch auf ARM-CPUs), das Subprojekt Cruncher - optimal golumb ruler auch für Android (ARM) und Exoten wie Solaris (SPARC) und Linux auf PS3.

    Dieses Projekt soll eine zwanglose Empfehlung für alle sein, die noch etwas für arbeitslose Rechner suchen, oder auch als Backupprojekt während anderer Aktionen dienen.

    Wir laden alle SETI.Germany-Mitglieder ein, für die eine oder andere WU vorbeizuschauen. Happy Vollgascrunching!
    von Veröffentlicht: 20.05.2018 21:50
    1. Kategorien:
    2. Projekte

    Bedingt durch den Pentathlon etwas später als gewohnt nun der Überblick über die mit PrimeGrid gefundenen Primzahlen des Vormonats. Mit insgesamt 80 Primzahlen war der April knapp der bisher ärmste Monat des Jahres 2018. Mitglieder von SETI.Germany traten einmal als Erstfinder und einmal als Doublechecker in Erscheinung.

    Der Höhepunkt des Monats war das Eliminieren eines k zur erweiterten Sierpinski-Vermutung während der Mathematics Awareness Month Challenge, der entsprechende Fund wurde als Top-100-Primzahl auch schon in den Projektnachrichten bekanntgegeben:
    • 193997*2^11452891+1, 3447670 Dezimalstellen, gefunden von tng* (Team: Sicituradastra.) aus den Vereinigten Staaten am 03.04.2018 um 16:55:55 MEZ, bestätigt von GDB aus den Vereinigten Staaten am 04.04.2018 um 01:17:20 MEZ


    3 weitere Megaprimzahlfunde waren zu verzeichnen, darunter auch der einzige Erstfund eines Mitglieds von SETI.Germany in diesem Monat:
    • Die 1010074-stellige verallgemeinerte Fermat-Primzahl 50844724^131072+1 wurde am 10.04.2018 um 17:29:16 MEZ von dh1saj (SETI.Germany) aus Deutschland mit einer NVIDIA GeForce GTX 1080 in Verbund mit einem Intel Core i7-4770 gefunden, wobei für den PRP-Test mit Genefer 7 Minuten 4 Sekunden benötigt wurden. Die Bestätigung erfolgte am 14.04.2018 um 17:57:43 MEZ durch eXaPower aus den Vereinigten Staaten mit einer NVIDIA GeForce GTX 1080 in Verbund mit einem Intel Core i5-4440S, wobei für den PRP-Test mit Genefer 7 Minuten 40 Sekunden benötigt wurden.

    • Die 1010206-stellige verallgemeinerte Fermat-Primzahl 50963598^131072+1 wurde am 16.04.2018 um 10:04:22 MEZ von Olgar (USA) aus den Vereinigten Staaten mit einer NVIDIA GeForce GTX 1070 in Verbund mit einem AMD Ryzen 7 1700 gefunden, wobei für den PRP-Test mit Genefer 8 Minuten 16 Sekunden benötigt wurden. Die Bestätigung erfolgte am 17.04.2018 um 16:07:39 MEZ durch mikey (The Final Front Ear) aus den Vereinigten Staaten mit einer NVIDIA GeForce GTX 750 Ti in Verbund mit einem Intel Xeon E5520, wobei für den PRP-Test mit Genefer 52 Minuten 3 Sekunden benötigt wurden.

    • Die 1056887-stellige Proth-Primzahl 1135*2^3510890+1 wurde am 19.04.2018 um 09:34:37 MEZ von 288larsson (Sicituradastra.) aus Schweden mit einem Intel Core i7-6700K gefunden, wobei für den Primalitätstest mit LLR auf 2 Threads etwa 25 Minuten benötigt wurden. Die Bestätigung erfolgte am 19.04.2018 um 08:38:10 MEZ durch LookAS (Czech National Team) aus Tschechien mit einem Intel Core i7-4790, wobei für den Primalitätstest mit LLR auf 2 Threads etwa 30 Minuten benötigt wurden.


    Die 76 kleineren Primzahlfunde verteilen sich wie folgt:
    • Proth Prime Search (PPS): 4 Funde im Bereich 2582112 ≤ n ≤ 2585660 (777297-778364 Dezimalstellen)
    • Proth Prime Search Extended (PPSE): 22 Funde im Bereich 1488307 ≤ n ≤ 1490188 (448029-448596 Dezimalstellen), darunter ein Doublecheck von ETX
    • Sophie Germain Prime Search (SGS): 22 Funde im Bereich 3941795822055 ≤ k ≤ 3965260454367 (388342 Dezimalstellen)
    • Generalized Fermat Prime Search (n=15): 16 Funde im Bereich 88950444 ≤ b ≤ 90681404 (260478-260752 Dezimalstellen)
    • Generalized Fermat Prime Search (n=16): 12 Funde im Bereich 37732056 ≤ b ≤ 38670832 (496548-497247 Dezimalstellen)


    von Veröffentlicht: 20.05.2018 20:00
    1. Kategorien:
    2. Projekte

    Es gibt einige inhaltliche Informationen zu den aktuellen Berechnungen:

    Über das aktuelle Experiment
    Im aktuellen Experiment untersuchen wir die Genauigkeit der Rekonstruktion von Schallgeschwindigkeitsprofilen in einem Flachwasser-Wellenleiter unter Verwendung eines dispersionsbasierten geoakustischen Inversionsschemas. Dieses Problem wurde auf eine Black-Box-Minimierung einer bestimmten Fehlanpassungsfunktion zurückgeführt. Ein Schallgeschwindigkeitsprofil wird als stückweise lineare Funktion mit festen Stützstellen in gleichmäßigen Abständen angenommen. An diesen Stützstellen werden bei der Inversion die Werte der Schallgeschwindigkeit ermittelt. Die wichtigste Neuerung ist, dass die Tiefe der Stützpunkte der Schallgeschwindigkeitsprofile ebenfalls als Inversionsparameter betrachtet werden. Beachtet, dass die Tiefen im vorherigen Experiment (engl.) im Herbst 2017 konstant waren.
    14.05.2018, 10:32:02 MEZ

    Originaltext:
    Zitat Zitat von http://www.acousticsathome.ru/boinc/forum_thread.php?id=50
    On the current experiment
    In the current experiment, we study the accuracy of the sound speed profile reconstruction in a shallow-water waveguide using a dispersion-based geoacoustic inversion scheme. This problem was transformed into a problem of black-box minimization of a certain mismatch function. A sound speed profile is considered a piecewise-linear function with fixed uniformly-spaced nodes. At these nodes, the values of sound speed are obtained in the course of inversion. The main novelty is that the depths of the sound speed profile nodes are also considered inversion parameters. Note, that in the previous experiment held in Autumn 2017 the depths were constant.

    [...]
    14 May 2018, 9:32:02 UTC
    von Veröffentlicht: 20.05.2018 18:25
    1. Kategorien:
    2. Projekte

    Zwei weitere Sätze von insgesamt zwölf Arten graphischer Darstellungen von Orthogonalitätsbeziehungen orthogonaler diagonaler lateinischer Quadrate wurden in der vergangenen Woche vorgestellt:

    Weitere Arten von Graphen entdeckt!
    Liebe Teilnehmer!

    Auf der vorläufigen Ergebnisseite haben wir die nächsten sieben Arten von Graphen zu orthogonalen diagonalen lateinischen Quadraten (engl. orthogonal diagonal Latin squares, ODLS) veröffentlicht, die vom Projekt RakeSearch entdeckt wurden. Jede Art wurde in Form ihres ersten vom Projekt gefundenen Vorkommnisses veröffentlicht.

    Der erste Graph, R9_000038399/02, ist groß und besteht aus 9056 Knoten und 45976 Kanten. Ihr könnt auch eine Animation der Detail-Darstellung ansehen, vom Skelett zu allen Kanten:


    Der zweite Graph, R9_000038401/03, hat eine mittlere Größe von 52 Knoten und 122 Kanten:


    Der dritte Graph, R9_000038428/01, ist eine kleine Ziegelwand und besteht aus 8 Knoten und 10 Kanten.


    Der vierte Graph, R9_000038818/02, ist eine unbekannte außerirdische Figur, ein mittelgroßer Graph von 24 Knoten und 72 Kanten:


    Der fünfte Graph, R9_000038818/04, sieht etwas wie ein Vogel aus und enthält 36 Knoten und 88 Kanten:


    Der sechste Graph, R9_000039774/01, sieht aus wie... das Sternbild Bootes? Oder ein Frosch? Auf jeden Fall ist es ein Graph von 6 Knoten und 6 Kanten:


    Der siebte Graph, R9_000039963/04, sieht wie ein anderer sehr bekannter Asterismus aus - die hellsten Sterne des Sternbildes Delphin! 5 Knoten und 5 Kanten:

    13.05.2018, 17:49:51 MEZ


    Neuigkeiten zum Wochenende, 5 neue Arten von Graphen entdeckt!
    Liebe Leute!

    Wir präsentieren die nächsten 5 Arten von Graphen, die vom Projekt RakeSearch entdeckt wurden.

    Der erste Graph [R9_000040159/01] sieht wie eine Blume aus. Viele Quadrate in dieser Menge sind orthogonal zu den beiden Quadraten im Zentrum des Graphen und während des Zeichnens haben die Kanten eine "Blütenblattfigur" gebildet. 32 Knoten und 62 Kanten sind für das Wachstum dieser Blume erforderlich.


    Der zweite Graph [R9_000040275/01] ist groß, der zweitgrößte in der gesamten Menge von Graphen, die das Projekt bis heute gefunden hat. 61824 Knoten und 374064 Kanten spannen ein Netz mit mehreren "Schwerpunkten" auf, die von Bündeln von Kanten verbunden werden. Wir können auch in der Animation (8,3 MB) sehen, wie dieser Graph ausgefüllt wird.


    Der dritte Graph [R9_000040835/01] besteht aus 154 Knoten und 1263 Kanten (der fünftgrößte bisher!), aus denen... eine Dschungelblume entsteht?


    Der vierte Graph [R9_000040839/02] erinnert uns an die Tiere des Erdaltertums. Nur 16 Knoten und 34 Kanten bilden ihn.


    Der fünfte Graph [R9_000041622/02] sieht wie ein deutlich moderneres Objekt aus! Ein Satellit? 24 Quadrate, die durch 84 Orthogonalitätsbeziehungen befestigt werden, sind zum Bau dieses "Weltraumteleskops" erforderlich.


    Zum Ende gratulieren wir allen Teilnehmern des 9. BOINC Pentathlon zum Abschließen dieser Herausforderung! Den Gewinnern, die Millionen von Aufgaben gecruncht haben, und den Teams, die zumindest eine WU geschafft haben! Verteiltes Rechnen ist ein bemerkenswertes und außergewöhnliches Merkmal unserer Zeit. Und wir hoffen, dass wir erst die ersten Blüten davon sehen.
    19.05.2018, 9:03:41 MEZ


    Originaltexte:
    Zitat Zitat von http://rake.boincfast.ru/rakesearch/forum_thread.php?id=76
    More types of graphs discovered!
    Dear participants!

    On the preliminary results page, we published the next 7 types of the graphs of orthogonal diagonal Latin squares (ODLS), discovered in RakeSearch project. Each type was published in form of its first instance, found in project.

    The first one, R9_000038399/02, is big and consist of 9056 verticles and 45976 edges. Also, you can see an animation of it detalization: from skeleton to all edges:
    [img]

    The second one, R9_000038401/03, is a medium-size graph of 52 verticles and 122 edges:
    [img]

    The third one, R9_000038428/01, is a small brick wall and consist of 8 verticles and 10 edges.
    [img]

    The fourth one, R9_000038818/02, is an unknown non-Earth figure, a medium size graph, of 24 vericles and 72 edges:
    [img]

    The fifth one, R9_000038818/04, is a bit like a bird and contains 36 verticles and 88 edges:
    [img]

    The sixth one, R9_000039774/01, is like... Bootes constellation? Or frog? In any case - it is a graph of 6 verticles and 6 edges:
    [img]

    The seventh, R9_000039963/04, is like another well known asterism - the brightest stars of Delphinius constellation! 5 verticles and 5 edges:
    [img]
    13 May 2018, 16:49:51 UTC
    Zitat Zitat von http://rake.boincfast.ru/rakesearch/forum_thread.php?id=80
    Weekend news, 5 new types of graphs discovered!
    Dear folks!

    We present the next 5 types of graphs, discovered in RakeSearch project.

    The first one [R9_000040159/01] looks like a flower. Many squares of this set are orthogonal to the 2 squares, placed in the center of the graph, and during the drawing graph edges formed a "petal figure". 32 verticles and 62 edges are necessary for the growth of this flower.
    [img]

    The second one [R9_000040275/01] - is big, second by size in entire set of graphs, that found in project today. 61824 verticles and 374064 edges construct a net with several "centers of gravity" linked by bunches of edges. Also we can see animation (8.3 Mb) with filling of this graph.
    [img]

    The third one [R9_000040835/01] - comprises from 154 verticles and 1263 edges (5th by size on today!) emerging to ... a jungle flower?
    [img]

    The forth one [R9_000040839/02] brings us to mind the animals of ancient life of Earth. Only 16 verticles and 34 edges form it.
    [img]

    The fifth one [R9_000041622/02] looks like significantly more modern object! Satellite? 24 squares fastened by 84 relationships of orthogonality are needed for build this "space telescope".
    [img]

    And in the end, we congratulate all participants of the 9th BOINC Pentathlon with finishing this challenge! Winners, who crunched millions of tasks and teams that completed at least one workunit! Distributed computing is remarkable and extraordinary feature of our time. And we hope that now we see only the first leaves of it.
    19 May 2018, 8:03:41 UTC

    Seite 1 von 84 1 2 3 11 51 ... Letzte
Single Sign On provided by vBSSO