Das Designen formverändernder Proteine
Heute berichten wir über das Design von Proteinsequenzen, die mehr als eine gut gefaltete Struktur annehmen, was an virale Fusionsproteine erinnert. Diese Forschung bringt uns der Schaffung künstlicher Proteinsysteme mit zuverlässigen beweglichen Teilen näher.
In der Natur verändern viele Proteine ihre Form als Reaktion auf ihre Umgebung. Diese Plastizität ist oft mit der biologischen Funktion verbunden. Während das rechnergestützte Proteindesign dazu verwendet wurde, Moleküle zu schaffen, die sich in einen einzigen stabilen Zustand falten, und natürliche Proteine umzugestalten, um ihre Dynamik oder Faltung zu verändern, ist das Design von Grund auf eng verwandter Sequenzen, die gut definierte, aber divergierende Strukturen annehmen, eine herausragende Herausforderung geblieben.
Um formverändernde Proteine zu erzeugen, begann ein Team unter der Leitung der kürzlich im Baker-Labor promovierten Kathy Wei damit, Sätze von Aminosäuresequenzen zu identifizieren, von denen vorhergesagt wurde, dass sie sich in sehr unterschiedliche Strukturen falten - in diesem Fall Paare zylindrischer Helixbündel mit unterschiedlichen Längen.
"Wir wussten von Anfang an, dass wir eine Sequenz zwischen einem kurzen Zustand mit spiralförmigen "Armen", die "nach unten" zeigen, und einem langen Zustand mit spiralförmigen "Armen", die "nach oben" zeigen, umwandeln wollten. Der Plan war, mit Hilfe etablierter Protokolle zunächst verschiedene Proteine zu entwerfen, die sich in jedem der beiden Zustände befinden, und dann die Sequenzen dieser beiden Ausgangspunkte zueinander zu mutieren, bis wir eine Sequenz gefunden haben, die sich in beide Zustände falten lässt", sagt Wei.
Nach den Designrunden am Computer und Tests im Labor gelang es dem Team, ein einziges Molekül zu schaffen, das in beiden Zuständen zu sehen ist.
"Eine der größten Herausforderungen bei diesem Projekt war es, einen Weg zu finden, um zu erkennen, ob die Proteine die Form annehmen, für die sie entworfen wurden. Hochdurchsatz-Screeningmethoden neigen dazu, sich auf eine enzymatische Eigenschaft eines Proteins zu verlassen. Da sich diese entworfenen Proteine nur in ihrer Form unterschieden, mussten wir ihre Faltung mittels Kristallographie und NMR überprüfen, was ein langsamer Prozess ist und nicht garantiert zu Ergebnissen führt."
"Wir haben zwar eine wirklich vielversprechende Proteinsequenz gefunden, die wir in beiden geplanten Zuständen messen können, aber sie ist überraschend viel weniger dynamisch, als wir erwartet hätten. Als Nächstes wollen wir verstehen, wie wir die Konformationsänderungen dynamischer machen und wie wir sie kontrolliert auslösen können."
Dem Team gehörten Wissenschaftler der Universität von Washington, der UC Berkeley, der UC Santa Cruz und der Stanford University an. Ihre Arbeit wurde von NIH, DOE, HHMI und dem Chan Zuckerberg Biohub unterstützt.
Originaltext:

